On-Demand Videos
Scaling experimentation in digital marketplaces is crucial for driving growth and enhancing user experiences. However, varied methodologies and a lack of experiment governance can hinder the impact of experimentation leading to inconsistent decision-making, inefficiencies, and missed opportunities for innovation.
At Poshmark, we developed a homegrown experimentation platform, Lightspeed, that allowed us to make reliable and confident reads on product changes, which led to a 10x growth in experiment velocity and positive business outcomes along the way.
This session will provide a deep dive into the best practices and lessons learned from successful implementations of large-scale experiments. We will explore the importance of experimentation, overcome scalability challenges, and gain insights into the frameworks and technologies that enable effective testing.
In the rapidly evolving world of e-commerce, visual search has become a game-changing technology. Poshmark, a leading fashion resale marketplace, has developed Posh Lens – an advanced visual search engine that revolutionizes how shoppers discover and purchase items.
Under the hood of Posh Lens lies Milvus, a vector database enabling efficient product search and recommendation across our vast catalog of over 150 million items. However, with such an extensive and growing dataset, maintaining high-performance search capabilities while scaling AI infrastructure presents significant challenges.
In this talk, Mahesh Pasupuleti shares:
- The architecture and strategies to scale Milvus effectively within the Posh Lens infrastructure
- Key considerations include optimizing vector indexing, managing data partitioning, and ensuring query efficiency amidst large-scale data growth
- Distributed computing principles and advanced indexing techniques to handle the complexity of Poshmark’s diverse product catalog
As machine learning and deep learning models grow in complexity, AI platform engineers and ML engineers face significant challenges with slow data loading and GPU utilization, often leading to costly investments in high-performance computing (HPC) storage. However, this approach can result in overspending without addressing the core issues of data bottlenecks and infrastructure complexity.
A better approach is adding a data caching layer between compute and storage, like Alluxio, which offers a cost-effective alternative through its innovative data caching strategy. In this webinar, Jingwen will explore how Alluxio's caching solutions optimize AI workloads for performance, user experience and cost-effectiveness.
What you will learn:
- The I/O bottlenecks that slow down data loading in model training
- How Alluxio's data caching strategy optimizes I/O performance for training and GPU utilization, and significantly reduces cloud API costs
- The architecture and key capabilities of Alluxio
- Using Rapid Alluxio Deployer to install Alluxio and run benchmarks in AWS in just 30 minutes
Cloud-native model training jobs require fast data access to achieve shorter training cycles. Accessing data can be challenging when your datasets are distributed across different regions and clouds. Additionally, as GPUs remain scarce and expensive resources, it becomes more common to set up remote training clusters from where data resides. This multi-region/cloud scenario introduces the challenges of losing data locality, resulting in operational overhead, latency and expensive cloud costs.
In the third webinar of the multi-cloud webinar series, Chanchan and Shawn dive deep into:
- The data locality challenges in the multi-region/cloud ML pipeline
- Using a cloud-native distributed caching system to overcome these challenges
- The architecture and integration of PyTorch/Ray+Alluxio+S3 using POSIX or RESTful APIs
- Live demo with ResNet and BERT benchmark results showing performance gains and cost savings analysis
In this presentation, Bin Fan (VP of Open Source @ Alluxio) will address a critical challenge of optimizing data loading for distributed Python applications within AI/ML workloads in the cloud, focusing on popular frameworks like Ray and Hugging Face. Integration of Alluxio’s distributed caching for Python applications is accomplished using the fsspec interface, thus greatly improving data access speeds. This is particularly useful in machine learning workflows, where repeated data reloading across slow, unstable or congested networks can severely affect GPU efficiency and escalate operational costs.
Attendees can look forward to practical, hands-on demonstrations showcasing the tangible benefits of Alluxio’s caching mechanism across various real-world scenarios. These demos will highlight the enhancements in data efficiency and overall performance of data-intensive Python applications. This presentation is tailored for developers and data scientists eager to optimize their AI/ML workloads. Discover strategies to accelerate your data processing tasks, making them not only faster but also more cost-efficient.
As GenAI and AI continue to transform businesses, scaling these workloads requires optimized underlying infrastructure. A multi-cloud architecture allows organizations to leverage different cloud services to meet diverse workload demands while maximizing efficiency, reducing costs, and avoiding vendor lock-in. However, achieving a multi-cloud vision can be challenging.
In this webinar, Tarik will share how an agonistic data layer, like Alluxio, allows you to embrace the separation of storage from compute and simplify the adoption of multi-cloud for AI.
- Learn why leveraging multiple cloud providers is critical for balancing performance, scalability, and cost of your AI platform
- Discover how an agnostic data layer like Alluxio provides seamless data access in multi-cloud that bridges storage and compute without data replication
- Gain insights into real-world examples and best practices for deploying AI across on-prem, hybrid, and multi-cloud environments
2024 is gearing up to be an impactful year for AI and analytics. Join us on January 30, as Kevin Petrie (VP of Research at Eckerson Group) and Omid Razavi (SVP of Customer Success at Alluxio) share key trends that data and AI leaders should know. This event will efficiently guide you with market data and expert insights to drive successful business outcomes.
- Assess current and future trends in data and AI with industry experts
- Discover valuable insights and practical recommendations
- Learn best practices to make your enterprise data more accessible for both analytics and AI applications
As a cache eviction algorithm, FIFO has a lot of attractive properties, such as simplicity, speed, scalability, and flash-friendliness. The most prominent criticism of FIFO is its low efficiency (high miss ratio). In this talk, Juncheng Yangb describes a simple, scalable FIFO-based algorithm with three static queues (S3-FIFO). Evaluated on 6594 cache traces from 14 datasets, we show that S3- FIFO has lower miss ratios than state-of-the-art algorithms across traces. Moreover, S3-FIFO’s efficiency is robust — it has the lowest mean miss ratio on 10 of the 14 datasets. FIFO queues enable S3-FIFO to achieve good scalability with 6× higher throughput compared to optimized LRU at 16 threads. Our insight is that most objects in skewed workloads will only be accessed once in a short window, so it is critical to evict them early (also called quick demotion). The key of S3-FIFO is a small FIFO queue that filters out most objects from entering the main cache, which provides a guaranteed demotion speed and high demotion precision.
In this session, Jingwen presents an overview of using Alluxio Edge caching to accelerate Trino or Presto queries. She offers practical best practices for using distributed caching with compute engines. In addition, this session also features insights from real-world examples.
In this session, cloud optimization specialists Chunxu and Siyuan break down the challenges and present a fresh architecture designed to optimize I/O across the data pipeline, ensuring GPUs function at peak performance. The integrated solution of PyTorch/Ray + Alluxio + S3 offers a promising way forward, and the speakers delve deep into its practical applications. Attendees will not only gain theoretical insights but will also be treated to hands-on instructions and demonstrations of deploying this cutting-edge architecture in Kubernetes, specifically tailored for Tensorflow/PyTorch/Ray workloads in the public cloud.
Shengxuan Liu from ByteDance presents the new ByteDance’s native Parquet Reader. The talk covers the architecture and key features of the Reader, and how the new Reader is able to facilitate data processing efficiency.
Uber builds one of the biggest data lakes in the industry, which stores exabytes of data. In this talk, we will introduce the evolution of our data storage architecture, and delve into multiple key initiatives during the past several years.
Specifically, we will introduce:
- Our on-prem HDFS cluster scalability challenges and how we solved them
- Our efficiency optimizations that significantly reduced the storage overhead and unit cost without compromising reliability and performance
- The challenges we are facing during the ongoing Cloud migration and our solutions
Many companies are working with development architectures for AI platforms but have concerns about efficiency at scale as data volumes increase. They use centralized cloud data lakes, like S3, to store training data for AI platforms. However, GPU shortages add more complications. Storage and compute can be separate, or even remote, making data loading slow and expensive:
- Optimizing a developmental setup can include manual copies, which are slow and error-prone
- Directly transferring data across regions or from cloud to on-premises can incur expensive egress fees
This webinar covers solutions to improve data loading for model training. You will learn:
- The data loading challenges with distributed infrastructure
- Typical solutions, including NFS/NAS on object storage, and why they are not the best options
- Common architectures that can improve data loading and cost efficiency
- Using Alluxio to accelerate model training and reduce costs
This hands-on session discusses best practices for using PyTorch and Alluxio during model training on AWS. Shawn and Lu provide a step-by-step demonstration of how to use Alluxio on EKS as a distributed cache to accelerate computer vision model training jobs that read datasets from S3. This architecture significantly improves the utilization of GPUs from 30% to 90%+, archives ~5x faster training, and lower cloud storage costs.
ChatGPT and other massive models represents an amazing step forward in AI, yet they do not solve real-world business problems. In this session, Jordan Plawner, Global Director of Artificial Intelligence Product Manager and Strategy at Intel, surveys how the AI ecosystem has worked non-stop over this last year to take these all-purpose multi-task models and optimize them to they can be used by organizations to address domain specific problems. He explains these new AI-for-the-real world techniques and methods such as fine tuning and how they can be applied to deliver results which are highly performant with state-of-the-art accuracy while also being economical to build and deploy everywhere to enhance products and services.