.png)
AI training workloads running on compute engines like PyTorch, TensorFlow, and Ray require consistent, high-throughput access to training data to maintain high GPU utilization. However, with the decoupling of compute and storage and with today’s hybrid and multi-cloud landscape, AI Platform and Data Infrastructure teams are struggling to cost-effectively deliver the high-performance data access needed for AI workloads at scale.
Join Tom Luckenbach, Alluxio Solutions Engineering Manager, to learn how Alluxio enables high-speed, cost-effective data access for AI training workloads in hybrid and multi-cloud architectures, while eliminating the need to manage data copies across regions and clouds.
What Tom will share:
- AI data access challenges in cross-region, cross-cloud architectures.
- The architecture and integration of Alluxio with frameworks like PyTorch, TensorFlow, and Ray using POSIX, REST, or Python APIs across AWS, GCP and Azure.
- A live demo of an AI training workload accessing cross-cloud datasets leveraging Alluxio's distributed cache, unified namespace, and policy-driven data management.
- MLPerf and FIO benchmark results and cost-savings analysis.
As machine learning and deep learning models grow in complexity, AI platform engineers and ML engineers face significant challenges with slow data loading and GPU utilization, often leading to costly investments in high-performance computing (HPC) storage. However, this approach can result in overspending without addressing the core issues of data bottlenecks and infrastructure complexity.
A better approach is adding a data caching layer between compute and storage, like Alluxio, which offers a cost-effective alternative through its innovative data caching strategy. In this webinar, Jingwen will explore how Alluxio's caching solutions optimize AI workloads for performance, user experience and cost-effectiveness.
What you will learn:
- The I/O bottlenecks that slow down data loading in model training
- How Alluxio's data caching strategy optimizes I/O performance for training and GPU utilization, and significantly reduces cloud API costs
- The architecture and key capabilities of Alluxio
- Using Rapid Alluxio Deployer to install Alluxio and run benchmarks in AWS in just 30 minutes
OpenAI’s developer Developer Experience Engineer, Ankit Khare, provides practical insights for AI enthusiasts on effectively customizing and leveraging LLMs in various applications through preference tuning and fine-tuning.
In today’s AI-driven world, organizations face unprecedented demands for powerful AI infrastructure to fuel their model training and serving workloads. Performance bottlenecks, cost inefficiencies, and management complexities pose significant challenges for AI platform teams supporting large-scale model training and serving. On July 9, 2024, we introduced Alluxio Enterprise AI 3.2, a groundbreaking solution designed to address these critical issues in the ever-evolving AI landscape.
In this webinar, Shouwei Chen introduced exciting new features of Alluxio Enterprise AI 3.2:
- Leveraging GPU resources anywhere accessing remote data with the same local performance
- Enhanced I/O performance with 97%+ GPU utilization for popular language model training benchmarks
- Achieving the same performance as HPC storage on existing data lake without additional HPC storage infrastructure
- New Python FileSystem API to seamlessly integrate with Python applications like Ray
- Other new features, include advanced cache management, rolling upgrades, and CSI failover
As Trino users increasingly rely on cloud object storage for retrieving data, speed and cloud cost have become major challenges. The separation of compute and storage creates latency challenges when querying datasets; scanning data between storage and compute tiers becomes I/O bound. On the other hand, cloud API costs related to GET/LIST operations and cross-region data transfer add up quickly.
The newly introduced Trino file system cache by Alluxio aims to overcome the above challenges. In this session, Jianjian will dive into Trino data caching strategies, the latest test results, and discuss the multi-level caching architecture. This architecture makes Trino 10x faster for data lakes of any scale, from GB to EB.
What you will learn:
- Challenges relating to the speed and costs of running Trino in the cloud
- The new Trino file system cache feature overview, including the latest development status and test results
- A multi-level cache framework for maximized speed, including Trino file system cache and Alluxio distributed cache
- Real-world cases, including a large online payment firm and a top ridesharing company
- The future roadmap of Trino file system cache and Trino-Alluxio integration