As Trino users increasingly rely on cloud object storage for retrieving data, speed and cloud cost have become major challenges. The separation of compute and storage creates latency challenges when querying datasets; scanning data between storage and compute tiers becomes I/O bound. On the other hand, cloud API costs related to GET/LIST operations and cross-region data transfer add up quickly.
The newly introduced Trino file system cache by Alluxio aims to overcome the above challenges. In this session, Jianjian will dive into Trino data caching strategies, the latest test results, and discuss the multi-level caching architecture. This architecture makes Trino 10x faster for data lakes of any scale, from GB to EB.
What you will learn:
- Challenges relating to the speed and costs of running Trino in the cloud
- The new Trino file system cache feature overview, including the latest development status and test results
- A multi-level cache framework for maximized speed, including Trino file system cache and Alluxio distributed cache
- Real-world cases, including a large online payment firm and a top ridesharing company
- The future roadmap of Trino file system cache and Trino-Alluxio integration
As Trino users increasingly rely on cloud object storage for retrieving data, speed and cloud cost have become major challenges. The separation of compute and storage creates latency challenges when querying datasets; scanning data between storage and compute tiers becomes I/O bound. On the other hand, cloud API costs related to GET/LIST operations and cross-region data transfer add up quickly.
The newly introduced Trino file system cache by Alluxio aims to overcome the above challenges. In this session, Jianjian will dive into Trino data caching strategies, the latest test results, and discuss the multi-level caching architecture. This architecture makes Trino 10x faster for data lakes of any scale, from GB to EB.
What you will learn:
- Challenges relating to the speed and costs of running Trino in the cloud
- The new Trino file system cache feature overview, including the latest development status and test results
- A multi-level cache framework for maximized speed, including Trino file system cache and Alluxio distributed cache
- Real-world cases, including a large online payment firm and a top ridesharing company
- The future roadmap of Trino file system cache and Trino-Alluxio integration
Video:
Presentation slides:
Complete the form below to access the full overview:
Videos
TorchTitan is a proof-of-concept for Large-scale LLM training using native PyTorch. It is a repo that showcases PyTorch's latest distributed training features in a clean, minimal codebase.
In this talk, Tianyu will share TorchTitan’s design and optimizations for the Llama 3.1 family of LLMs, spanning 8 billion to 405 billion parameters, and showcase its performance, composability, and scalability.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.