Blog

Suresh Kumar Veerapathiran and Anudeep Kumar, engineering leaders at Uptycs, recently shared their experience of evolving their data platform and analytics architecture to power analytics through a generative AI interface. In their post on Medium titled Cache Me If You Can: Building a Lightning-Fast Analytics Cache at Terabyte Scale, Veerapathiran and Kumar provide detailed insights into the challenges they faced (and how they solved them) scaling their analytics solution that collects and reports on terabytes of telemetry data per day as part of Uptycs Cloud-Native Application Protection Platform (CNAPP) solutions.

With the new year comes new features in Alluxio Enterprise AI! Just weeks into 2025 and we are already bringing you exciting new features to better manage, scale, and secure your AI data with Alluxio. From advanced cache management and improved write performance to our Python SDK and S3 API enhancements, our latest release of Alluxio Enterprise AI delivers more power and performance to your AI workloads. Without further ado, let’s dig into the details.
.png)
.jpeg)
With the collaboration between Meta (Facebook), Princeton University, and Alluxio, we have developed "Shadow Cache" – a lightweight Alluxio component to track the working set size and infinite cache hit ratio. Shadow cache can keep track of the working set size over the past window dynamically and is implemented by a series of bloom filters. Shadow cache is deployed in Meta (Facebook) Presto and is being leveraged to understand the system bottleneck and help with routing design decisions.

This blog shares the practice of using Alluxio and Spark to accelerate the auto data tagging system in WeRide, an autonomous driving technology company.
.jpeg)
Alluxio is the data orchestration platform to unify data silos across heterogeneous environments. This is the last article in a series to give you the basics of Alluxio’s architecture and solution.
.jpeg)
This is a tutorial to guide a newbie to complete a new-contributor task and become an open-source contributor of the Alluxio project.
.jpeg)
This article highlights synergy between the two widely adopted open-source projects, Alluxio and Presto, and demonstrates how together they deliver a self-serve data architecture across clouds.
.jpeg)
As data stewards and security teams provide broader access to their organization’s data lake environments, having a centralized way to manage fine-grained access policies becomes increasingly important. Alluxio can use Apache Ranger’s centralized access policies in two ways: 1) directly controlling access to virtual paths in the Alluxio virtual file system or 2) enforcing existing access policies for the HDFS under stores.

Running Presto with Alluxio is gaining popularity in the community. It avoids long latency reading data from remote storage by utilizing SSD or memory to cache hot dataset close to Presto workers. Presto supports hash-based soft affinity scheduling to enforce that only one or two copies of the same data are cached in the entire cluster, which improves cache efficiency by allowing more hot data cached locally. The current hashing algorithm used, however, does not work well when cluster size changes. This article introduces a new hashing algorithm for soft affinity scheduling, consistent hashing, to address this problem.

This blog will introduce how Tencent uses Prometheus and Grafana to set up monitoring system for Alluxio in 10 minutes.
.jpeg)
To provide model training with the best experience, Tencent has implemented a 1000-node Alluxio cluster and designed a scalable, robust, and performant architecture to speed up Ceph storage for game AI training. This blog will give you insight into how Alluxio has been implemented and optimized at Tencent.
.jpeg)
2021 marked accelerated growth for the Alluxio Open Source Project. We could not be more grateful for what the community has achieved together in this past year. This blog provides a glimpse of the year long summary of our community growth.
.jpeg)
This blog is the last one in the machine learning series. Our first blog introduced the what and why of our solution, and the second blog compared traditional and Alluxio solutions. This blog will demonstrate how to set up and benchmark the end-to-end performance of the training process.

This blog is the second in the machine learning series following the previous one, which discussed Alluxio's solution to improve training performance and simplify data management. With the help of Alluxio, loading data from cloud storage, training and caching data can be done in a transparent and distributed way as a part of the training process, thus improving training performance and simplifying data management. In this blog 2 of the series, we focus on comparing traditional solutions with Alluxio’s.