On-Demand Videos
Deepseek’s recent announcement of the Fire-flyer File System (3FS) has sparked excitement across the AI infra community, promising a breakthrough in how machine learning models access and process data.
In this webinar, an expert in distributed systems and AI infrastructure will take you inside Deepseek 3FS, the purpose-built file system for handling large files and high-bandwidth workloads. We’ll break down how 3FS optimizes data access and speeds up AI workloads as well as the design tradeoffs made to maximize throughput for AI workloads.
This webinar you’ll learn about how 3FS works under the hood, including:
✅ The system architecture
✅ Core software components
✅ Read/write flows
✅ Data distribution/placement algorithms
✅ Cluster/node management and disaster recovery
Whether you’re an AI researcher, ML engineer, or infrastructure architect, this deep dive will give you the technical insights you need to determine if 3FS is the right solution for you.
.png)
This talk describes the design of shadow cache, a lightweight component to track the working set size of Alluxio cache. Shadow cache can keep track of the working set size over the past window dynamically, and is implemented by a series of bloom filters. We’ve deployed the shadow cache in Facebook Presto and leverage the result to understand the system bottleneck and help with routing design decisions.
Alluxio’s capabilities as a Data Orchestration framework have encouraged users to onboard more of their data-driven applications to an Alluxio powered data access layer. Driven by strong interests from our open-source community, the core team of Alluxio started to re-design an efficient and transparent way for users to leverage data orchestration through the POSIX interface. This effort has a lot of progress with the collaboration with engineers from Microsoft, Alibaba and Tencent. Particularly, we have introduced a new JNI-based FUSE implementation to support POSIX data access, created a more efficient way to integrate Alluxio with FUSE service, as well as many improvements in relevant data operations like more efficient distributedLoad, optimizations on listing or calculating directories with a massive amount of files, which are common in model training. We will also share our engineering lessons and roadmap in future releases to support Machine Learning applications.
Driven by strong interests from our open source community, the Alluxio core engineering team re-designed things to come up with a more efficient and transparent way for users to leverage data orchestration through the POSIX interface. This enables much better performance for ML workloads where data is accessed via the POSIX interface.
In this 20 minute community session, you’ll hear from Lu Qiu, one of Alluxio’s lead engineers on the POSIX implementation project.
In this session, you’ll learn:
- How Alluxio’s new JNI-based FUSE implementation supports more efficient POSIX data access
- How improvements to multiple data operations, including distributedLoad, optimizations on listing or calculating directories with a massive amounts of files, etc., improve performance. In model training
- How these latest enhancements improve performance on TensorFlow and PyTorch training workloads, even with GPU-based training and compute
ALLUXIO DAY V 2021 August 27, 2021
ALLUXIO DAY V 2021 August 27, 2021
ALLUXIO DAY V 2021 August 27, 2021
ALLUXIO DAY V 2021 August 27, 2021
With data lakes expanding from on-prem to the cloud as well as increasing use of new object data stores, data platform teams are challenged with providing consistent, high-throughput access to distributed data sources for analytics and AI/ML applications. In today’s hybrid cloud and multi-cloud era, data-intensive applications such as Presto, Spark, Hive, and Tensorflow are suffering more sluggish response times and increased complexity with the growing separation of data and compute.
Join Alluxio’s distributed systems experts as they explore today’s data access challenges and open source data orchestration solutions for modernizing your data platform.
In this tech talk, you’ll learn:
- How data access and throughput challenges are hindering large-scale analytics and AI/ML applications
- How a data orchestration layer can simplify distributed data access and improve performance
- Real-world production use cases and example journeys for architecting a modern data platform
Driven by strong interests from our open-source community, the core team of Alluxio started to re-design an efficient and transparent way for users to leverage data orchestration through the POSIX interface. We have introduced a new JNI-based FUSE implementation to support POSIX data access, as well as many improvements in relevant data operations like more efficient distributedLoad, optimizations on listing or calculating directories with a massive amount of files, which are common in model training.
Today’s analytics workloads demand real-time access to expansive amounts of data. This session demonstrates how Alluxio’s data orchestration platform, running on Intel Optane persistent memory, accelerates access to this data and uncovers its valuable business insights faster.
RaptorX is an internal project name aiming to boost query latency significantly beyond what vanilla Presto is capable of. For this session, we introduce the hierarchical cache work including Alluxio data cache, fragment result cache, etc. Cache is the key building block for RaptorX. With the support of the cache, we are able to boost query performance by 10X. This new architecture can beat performance oriented connectors like Raptor with the added benefit of continuing to work with disaggregated storage.
Nowadays it is not straightforward to integrate Alluxio with popular query engines like Presto on existing Hive data. Solutions proposed by the community like Alluxio Catalog Service or Transparent URI brings unnecessary pressure on Alluxio masters when querying files should not be cached. This talk covers TikTok’s approach on adopting Alluxio for the cache layer without introducing additional services.