On-Demand Videos
Scaling experimentation in digital marketplaces is crucial for driving growth and enhancing user experiences. However, varied methodologies and a lack of experiment governance can hinder the impact of experimentation leading to inconsistent decision-making, inefficiencies, and missed opportunities for innovation.
At Poshmark, we developed a homegrown experimentation platform, Lightspeed, that allowed us to make reliable and confident reads on product changes, which led to a 10x growth in experiment velocity and positive business outcomes along the way.
This session will provide a deep dive into the best practices and lessons learned from successful implementations of large-scale experiments. We will explore the importance of experimentation, overcome scalability challenges, and gain insights into the frameworks and technologies that enable effective testing.
In the rapidly evolving world of e-commerce, visual search has become a game-changing technology. Poshmark, a leading fashion resale marketplace, has developed Posh Lens – an advanced visual search engine that revolutionizes how shoppers discover and purchase items.
Under the hood of Posh Lens lies Milvus, a vector database enabling efficient product search and recommendation across our vast catalog of over 150 million items. However, with such an extensive and growing dataset, maintaining high-performance search capabilities while scaling AI infrastructure presents significant challenges.
In this talk, Mahesh Pasupuleti shares:
- The architecture and strategies to scale Milvus effectively within the Posh Lens infrastructure
- Key considerations include optimizing vector indexing, managing data partitioning, and ensuring query efficiency amidst large-scale data growth
- Distributed computing principles and advanced indexing techniques to handle the complexity of Poshmark’s diverse product catalog
As machine learning and deep learning models grow in complexity, AI platform engineers and ML engineers face significant challenges with slow data loading and GPU utilization, often leading to costly investments in high-performance computing (HPC) storage. However, this approach can result in overspending without addressing the core issues of data bottlenecks and infrastructure complexity.
A better approach is adding a data caching layer between compute and storage, like Alluxio, which offers a cost-effective alternative through its innovative data caching strategy. In this webinar, Jingwen will explore how Alluxio's caching solutions optimize AI workloads for performance, user experience and cost-effectiveness.
What you will learn:
- The I/O bottlenecks that slow down data loading in model training
- How Alluxio's data caching strategy optimizes I/O performance for training and GPU utilization, and significantly reduces cloud API costs
- The architecture and key capabilities of Alluxio
- Using Rapid Alluxio Deployer to install Alluxio and run benchmarks in AWS in just 30 minutes
Increasingly powerful compute accelerators and large training dataset have made the storage layer a potential bottleneck in deep learning training/inference.
Offline inference job usually consumes and produces tens of tera-bytes data while running more than 10 hours.
For a large-scale job, it usually causes high IO pressure, increase job failure rate, and bring many challenges for system stability.
We adopt alluxio which acts as an intermediate storage tier between the compute tier and cloud storage to optimize IO throughput of deep learning inference job.
For the production workload, the performance improves 18% and we seldom see job failure because of storage issue.
Data Lake Analytics(DLA) is a large scale serverless data federation service on Alibaba Cloud. One of its serverless analytics engine is based on Presto. The DLA Presto engine supports a variety of data sources and is widely used in different application scenarios in the cloud. In this session, we will talk about the system architecture of DLA Presto engine, as well as the challenges and solutions. In particular, we will introduce the use of alluxio local cache to solve performance issues on OSS data sources caused by access delay and OSS bandwidth limitation. We will discuss the principle of alluxio local cache and some improvements we have made.
We are thrilled to announce the release of Alluxio 2.5!
Alluxio 2.5 focuses on improving interface support to broaden the set of data driven applications which can benefit from data orchestration. The POSIX and S3 client interfaces have greatly improved in performance and functionality as a result of the widespread usage and demand from AI/ML workloads and system administration needs. Alluxio is rapidly evolving to meet the needs of enterprises that are deploying it as a key component of their AI/ML stacks.
At the same time, Alluxio continues to integrate with the latest cloud and cluster orchestration technologies. In 2.5, Alluxio has new connectors for Google Cloud Storage and Azure Data Lake Storage Gen 2 as well as better operability functionality for Kubernetes environments.
In this Office Hour, we will go over:
- JNI Based POSIX API
- S3 Northbound API
- ADLS Gen 2 Connector
- GCSv2 Connector
Many companies we talk to have on premises data lakes and use the cloud(s) to burst compute. Many are now establishing new object data lakes as well. As a result, running analytics such as Hive, Spark, Presto and machine learning are experiencing sluggish response times with data and compute in multiple locations. We also know there is an immense and growing data management burden to support these workflows.
In this talk, we will walk through what Alluxio’s Data Orchestration for the hybrid cloud era is and how it solves the performance and data management challenges we see.
In this tech talk, we’ll go over:
- What is Alluxio Data Orchestration?
- How does it work?
- Alluxio customer results
Alluxio is an open source Data orchestration platform that can be deployed on multiple platforms. However, it can require a lot of thinking and experience to integrate Alluxio into an existing Data Architecture adhering to minimally required DevOps principles meeting Organizational standards.
The presentation talks about the best practices to set up and techniques to build a cluster with open source Alluxio on AWS EKS, for one of our clients, which made it Scalable, Reliable, and Secure by adapting to Kubernetes RBAC.
Our speaker Vasista Polali will show you how to :
- Bootstrap EKS cluster in AWS with Terraform.
- Deploy open source Alluxio in a Namespace with persistence in AWS EFS.
- Scale up and down the Alluxio worker nodes as Daemon sets by Scaling the EKS nodes with Terraform.
- Accessing data with S3 mount.
- Controlling the access to Alluxio with Kubernetes port-forwarding, “setfacl” functionality, and Kubernetes service accounts.
- Re-using the data/metadata in the persistence layer on a new cluster.
ALLUXIO DAY 2021 March 11, 2021
ALLUXIO DAY 2021 March 11, 2021
ALLUXIO DAY 2021 March 11, 2021
ALLUXIO DAY 2021 March 9, 2021
ALLUXIO DAY 2021 March 9, 2021
ALLUXIO DAY 2021 March 9, 2021