RaptorX is an internal project name aiming to boost query latency significantly beyond what vanilla Presto is capable of. For this session, we introduce the hierarchical cache work including Alluxio data cache, fragment result cache, etc. Cache is the key building block for RaptorX. With the support of the cache, we are able to boost query performance by 10X. This new architecture can beat performance oriented connectors like Raptor with the added benefit of continuing to work with disaggregated storage.
ALLUXIO DAY IV 2021
June 24, 2021
RaptorX is an internal project name aiming to boost query latency significantly beyond what vanilla Presto is capable of. For this session, we introduce the hierarchical cache work including Alluxio data cache, fragment result cache, etc. Cache is the key building block for RaptorX. With the support of the cache, we are able to boost query performance by 10X. This new architecture can beat performance oriented connectors like Raptor with the added benefit of continuing to work with disaggregated storage.
Video:
Presentation Slides:
RaptorX is an internal project name aiming to boost query latency significantly beyond what vanilla Presto is capable of. For this session, we introduce the hierarchical cache work including Alluxio data cache, fragment result cache, etc. Cache is the key building block for RaptorX. With the support of the cache, we are able to boost query performance by 10X. This new architecture can beat performance oriented connectors like Raptor with the added benefit of continuing to work with disaggregated storage.
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
Deepseek’s recent announcement of the Fire-flyer File System (3FS) has sparked excitement across the AI infra community, promising a breakthrough in how machine learning models access and process data.
In this webinar, an expert in distributed systems and AI infrastructure will take you inside Deepseek 3FS, the purpose-built file system for handling large files and high-bandwidth workloads. We’ll break down how 3FS optimizes data access and speeds up AI workloads as well as the design tradeoffs made to maximize throughput for AI workloads.
This webinar you’ll learn about how 3FS works under the hood, including:
✅ The system architecture
✅ Core software components
✅ Read/write flows
✅ Data distribution/placement algorithms
✅ Cluster/node management and disaster recovery
Whether you’re an AI researcher, ML engineer, or infrastructure architect, this deep dive will give you the technical insights you need to determine if 3FS is the right solution for you.