Enterprises are adopting big data technologies to analyze and derive insight from their growing volumes of structured and unstructured data. A familiar problem is the requirement to analyze data from multiple independent storage silos concurrently. In order to consolidate the data, large enterprises typically use custom solutions or build a data lake. These approaches present additional challenges and can be costly and time consuming. Alluxio helps organizations handle their big data by providing a unified view of all of the data in your enterprise – on premise, in the cloud, or hybrid. Applications access data using a standard interface to a global virtual namespace. Alluxio also employs a memory-centric architecture to enable data access at memory speed. With the combined unification and performance benefits, Alluxio can effectively provide big data federation for organizations by acting as a virtual data lake. We just published a whitepaper that goes into more detail on this common use case, you can access it here:Structured Big Data Federation Using Alluxio.
Blog
We are thrilled to announce the general availability of Alluxio Enterprise for Data Analytics 3.2! With data volumes continuing to grow at exponential rates, data platform teams face challenges in maintaining query performance, managing infrastructure costs, and ensuring scalability. This latest version of Alluxio addresses these challenges head-on with groundbreaking improvements in scalability, performance, and cost-efficiency.
We’re excited to introduce Rapid Alluxio Deployer (RAD) on AWS, which allows you to experience the performance benefits of Alluxio in less than 30 minutes. RAD is designed with a split-plane architecture, which ensures that your data remains secure within your AWS environment, giving you peace of mind while leveraging Alluxio’s capabilities.
PyTorch is one of the most popular deep learning frameworks in production today. As models become increasingly complex and dataset sizes grow, optimizing model training performance becomes crucial to reduce training times and improve productivity.