Many companies are working with development architectures for AI platforms but have concerns about efficiency at scale as data volumes increase. They use centralized cloud data lakes, like S3, to store training data for AI platforms. However, GPU shortages add more complications. Storage and compute can be separate, or even remote, making data loading slow and expensive:
- Optimizing a developmental setup can include manual copies, which are slow and error-prone
- Directly transferring data across regions or from cloud to on-premises can incur expensive egress fees
This webinar covers solutions to improve data loading for model training. You will learn:
- The data loading challenges with distributed infrastructure
- Typical solutions, including NFS/NAS on object storage, and why they are not the best options
- Common architectures that can improve data loading and cost efficiency
- Using Alluxio to accelerate model training and reduce costs
Many companies are working with development architectures for AI platforms but have concerns about efficiency at scale as data volumes increase. They use centralized cloud data lakes, like S3, to store training data for AI platforms. However, GPU shortages add more complications. Storage and compute can be separate, or even remote, making data loading slow and expensive:
- Optimizing a developmental setup can include manual copies, which are slow and error-prone
- Directly transferring data across regions or from cloud to on-premises can incur expensive egress fees
This webinar covers solutions to improve data loading for model training. You will learn:
- The data loading challenges with distributed infrastructure
- Typical solutions, including NFS/NAS on object storage, and why they are not the best options
- Common architectures that can improve data loading and cost efficiency
- Using Alluxio to accelerate model training and reduce costs
Video:
Presentation slides:
Complete the form below to access the full overview:
Videos
Scaling experimentation in digital marketplaces is crucial for driving growth and enhancing user experiences. However, varied methodologies and a lack of experiment governance can hinder the impact of experimentation leading to inconsistent decision-making, inefficiencies, and missed opportunities for innovation.
At Poshmark, we developed a homegrown experimentation platform, Lightspeed, that allowed us to make reliable and confident reads on product changes, which led to a 10x growth in experiment velocity and positive business outcomes along the way.
This session will provide a deep dive into the best practices and lessons learned from successful implementations of large-scale experiments. We will explore the importance of experimentation, overcome scalability challenges, and gain insights into the frameworks and technologies that enable effective testing.
In the rapidly evolving world of e-commerce, visual search has become a game-changing technology. Poshmark, a leading fashion resale marketplace, has developed Posh Lens – an advanced visual search engine that revolutionizes how shoppers discover and purchase items.
Under the hood of Posh Lens lies Milvus, a vector database enabling efficient product search and recommendation across our vast catalog of over 150 million items. However, with such an extensive and growing dataset, maintaining high-performance search capabilities while scaling AI infrastructure presents significant challenges.
In this talk, Mahesh Pasupuleti shares:
- The architecture and strategies to scale Milvus effectively within the Posh Lens infrastructure
- Key considerations include optimizing vector indexing, managing data partitioning, and ensuring query efficiency amidst large-scale data growth
- Distributed computing principles and advanced indexing techniques to handle the complexity of Poshmark’s diverse product catalog
As machine learning and deep learning models grow in complexity, AI platform engineers and ML engineers face significant challenges with slow data loading and GPU utilization, often leading to costly investments in high-performance computing (HPC) storage. However, this approach can result in overspending without addressing the core issues of data bottlenecks and infrastructure complexity.
A better approach is adding a data caching layer between compute and storage, like Alluxio, which offers a cost-effective alternative through its innovative data caching strategy. In this webinar, Jingwen will explore how Alluxio's caching solutions optimize AI workloads for performance, user experience and cost-effectiveness.
What you will learn:
- The I/O bottlenecks that slow down data loading in model training
- How Alluxio's data caching strategy optimizes I/O performance for training and GPU utilization, and significantly reduces cloud API costs
- The architecture and key capabilities of Alluxio
- Using Rapid Alluxio Deployer to install Alluxio and run benchmarks in AWS in just 30 minutes