Many companies are working with development architectures for AI platforms but have concerns about efficiency at scale as data volumes increase. They use centralized cloud data lakes, like S3, to store training data for AI platforms. However, GPU shortages add more complications. Storage and compute can be separate, or even remote, making data loading slow and expensive:
- Optimizing a developmental setup can include manual copies, which are slow and error-prone
- Directly transferring data across regions or from cloud to on-premises can incur expensive egress fees
This webinar covers solutions to improve data loading for model training. You will learn:
- The data loading challenges with distributed infrastructure
- Typical solutions, including NFS/NAS on object storage, and why they are not the best options
- Common architectures that can improve data loading and cost efficiency
- Using Alluxio to accelerate model training and reduce costs
Many companies are working with development architectures for AI platforms but have concerns about efficiency at scale as data volumes increase. They use centralized cloud data lakes, like S3, to store training data for AI platforms. However, GPU shortages add more complications. Storage and compute can be separate, or even remote, making data loading slow and expensive:
- Optimizing a developmental setup can include manual copies, which are slow and error-prone
- Directly transferring data across regions or from cloud to on-premises can incur expensive egress fees
This webinar covers solutions to improve data loading for model training. You will learn:
- The data loading challenges with distributed infrastructure
- Typical solutions, including NFS/NAS on object storage, and why they are not the best options
- Common architectures that can improve data loading and cost efficiency
- Using Alluxio to accelerate model training and reduce costs
Video:
Presentation slides:
Many companies are working with development architectures for AI platforms but have concerns about efficiency at scale as data volumes increase. They use centralized cloud data lakes, like S3, to store training data for AI platforms. However, GPU shortages add more complications. Storage and compute can be separate, or even remote, making data loading slow and expensive:
- Optimizing a developmental setup can include manual copies, which are slow and error-prone
- Directly transferring data across regions or from cloud to on-premises can incur expensive egress fees
This webinar covers solutions to improve data loading for model training. You will learn:
- The data loading challenges with distributed infrastructure
- Typical solutions, including NFS/NAS on object storage, and why they are not the best options
- Common architectures that can improve data loading and cost efficiency
- Using Alluxio to accelerate model training and reduce costs
Video:
Presentation slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
Videos
In the rapidly evolving landscape of AI and machine learning, Platform and Data Infrastructure Teams face critical challenges in building and managing large-scale AI platforms. Performance bottlenecks, scalability of the platform, and scarcity of GPUs pose significant challenges in supporting large-scale model training and serving.
In this talk, we introduce how Alluxio helps Platform and Data Infrastructure teams deliver faster, more scalable platforms to ML Engineering teams developing and training AI models. Alluxio’s highly-distributed cache accelerates AI workloads by eliminating data loading bottlenecks and maximizing GPU utilization. Customers report up to 4x faster training performance with high-speed access to petabytes of data spread across billions of files regardless of persistent storage type or proximity to GPU clusters. Alluxio’s architecture lowers data infrastructure costs, increases GPU utilization, and enables workload portability for navigating GPU scarcity challenges.
TorchTitan is a proof-of-concept for Large-scale LLM training using native PyTorch. It is a repo that showcases PyTorch's latest distributed training features in a clean, minimal codebase.
In this talk, Tianyu will share TorchTitan’s design and optimizations for the Llama 3.1 family of LLMs, spanning 8 billion to 405 billion parameters, and showcase its performance, composability, and scalability.