tf.data is the recommended API for creating TensorFlow input pipelines and is relied upon by countless external and internal Google users. The API enables you to build complex input pipelines from simple, reusable pieces and makes it possible to handle large amounts of data, different data formats, and perform complex transformations. In this talk, I will present an overview of the project and highlight best practices for creating performant input pipelines.
tf.data is the recommended API for creating TensorFlow input pipelines and is relied upon by countless external and internal Google users. The API enables you to build complex input pipelines from simple, reusable pieces and makes it possible to handle large amounts of data, different data formats, and perform complex transformations. In this talk, I will present an overview of the project and highlight best practices for creating performant input pipelines.
tf.data is the recommended API for creating TensorFlow input pipelines and is relied upon by countless external and internal Google users. The API enables you to build complex input pipelines from simple, reusable pieces and makes it possible to handle large amounts of data, different data formats, and perform complex transformations. In this talk, I will present an overview of the project and highlight best practices for creating performant input pipelines.
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
Deepseek’s recent announcement of the Fire-flyer File System (3FS) has sparked excitement across the AI infra community, promising a breakthrough in how machine learning models access and process data.
In this webinar, an expert in distributed systems and AI infrastructure will take you inside Deepseek 3FS, the purpose-built file system for handling large files and high-bandwidth workloads. We’ll break down how 3FS optimizes data access and speeds up AI workloads as well as the design tradeoffs made to maximize throughput for AI workloads.
This webinar you’ll learn about how 3FS works under the hood, including:
✅ The system architecture
✅ Core software components
✅ Read/write flows
✅ Data distribution/placement algorithms
✅ Cluster/node management and disaster recovery
Whether you’re an AI researcher, ML engineer, or infrastructure architect, this deep dive will give you the technical insights you need to determine if 3FS is the right solution for you.