Increasingly powerful compute accelerators and large training dataset have made the storage layer a potential bottleneck in deep learning training/inference.
Offline inference job usually consumes and produces tens of tera-bytes data while running more than 10 hours.
For a large-scale job, it usually causes high IO pressure, increase job failure rate, and bring many challenges for system stability.
We adopt alluxio which acts as an intermediate storage tier between the compute tier and cloud storage to optimize IO throughput of deep learning inference job.
For the production workload, the performance improves 18% and we seldom see job failure because of storage issue.
ALLUXIO DAY III 2021
April 27, 2021
Increasingly powerful compute accelerators and large training dataset have made the storage layer a potential bottleneck in deep learning training/inference.
Offline inference job usually consumes and produces tens of tera-bytes data while running more than 10 hours.
For a large-scale job, it usually causes high IO pressure, increase job failure rate, and bring many challenges for system stability.
We adopt alluxio which acts as an intermediate storage tier between the compute tier and cloud storage to optimize IO throughput of deep learning inference job.
For the production workload, the performance improves 18% and we seldom see job failure because of storage issue.
Video:
Presentation Slides:
Increasingly powerful compute accelerators and large training dataset have made the storage layer a potential bottleneck in deep learning training/inference.
Offline inference job usually consumes and produces tens of tera-bytes data while running more than 10 hours.
For a large-scale job, it usually causes high IO pressure, increase job failure rate, and bring many challenges for system stability.
We adopt alluxio which acts as an intermediate storage tier between the compute tier and cloud storage to optimize IO throughput of deep learning inference job.
For the production workload, the performance improves 18% and we seldom see job failure because of storage issue.
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
Deepseek’s recent announcement of the Fire-flyer File System (3FS) has sparked excitement across the AI infra community, promising a breakthrough in how machine learning models access and process data.
In this webinar, an expert in distributed systems and AI infrastructure will take you inside Deepseek 3FS, the purpose-built file system for handling large files and high-bandwidth workloads. We’ll break down how 3FS optimizes data access and speeds up AI workloads as well as the design tradeoffs made to maximize throughput for AI workloads.
This webinar you’ll learn about how 3FS works under the hood, including:
✅ The system architecture
✅ Core software components
✅ Read/write flows
✅ Data distribution/placement algorithms
✅ Cluster/node management and disaster recovery
Whether you’re an AI researcher, ML engineer, or infrastructure architect, this deep dive will give you the technical insights you need to determine if 3FS is the right solution for you.