Running AI/ML workloads in different clouds present unique challenges. The key to a manageable multi-cloud architecture is the ability to seamlessly access data across environments with high performance and low cost.
This webinar is designed for data platform engineers, data infra engineers, data engineers, and ML engineers who work with multiple data sources in hybrid or multi-cloud environments. Chanchan and Bin will guide the audience through using Alluxio to greatly simplify data access and make model training and serving more efficient in these environments.
You will learn:
- How to access data in multi-region, hybrid, and multi-cloud like accessing a local file system
- How to run PyTorch to read datasets and write checkpoints to remote storage with Alluxio as the distributed data access layer
- Real-world examples and insights from tech giants like Uber, AliPay and more
Running AI/ML workloads in different clouds present unique challenges. The key to a manageable multi-cloud architecture is the ability to seamlessly access data across environments with high performance and low cost.
This webinar is designed for data platform engineers, data infra engineers, data engineers, and ML engineers who work with multiple data sources in hybrid or multi-cloud environments. Chanchan and Bin will guide the audience through using Alluxio to greatly simplify data access and make model training and serving more efficient in these environments.
You will learn:
- How to access data in multi-region, hybrid, and multi-cloud like accessing a local file system
- How to run PyTorch to read datasets and write checkpoints to remote storage with Alluxio as the distributed data access layer
- Real-world examples and insights from tech giants like Uber, AliPay and more
Video:
Presentation slides:
Complete the form below to access the full overview:
Videos
TorchTitan is a proof-of-concept for Large-scale LLM training using native PyTorch. It is a repo that showcases PyTorch's latest distributed training features in a clean, minimal codebase.
In this talk, Tianyu will share TorchTitan’s design and optimizations for the Llama 3.1 family of LLMs, spanning 8 billion to 405 billion parameters, and showcase its performance, composability, and scalability.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.