This talk will discuss the process and technical details behind a responsible vulnerability disclosure of an issue detected in Alluxio recently. I will share some of the lessons I’ve learned as a security researcher dealing with multiple open-source vendors and my thoughts about the actions organizations and projects should take to ensure successful vulnerability management and disclosure programs. Learn more about creating more secure software.
ALLUXIO DAY XII 2022
April 28, 2022
This talk will discuss the process and technical details behind a responsible vulnerability disclosure of an issue detected in Alluxio recently. I will share some of the lessons I’ve learned as a security researcher dealing with multiple open-source vendors and my thoughts about the actions organizations and projects should take to ensure successful vulnerability management and disclosure programs. Learn more about creating more secure software.
Video:
Presentation Slides:
Complete the form below to access the full overview:
Videos
TorchTitan is a proof-of-concept for Large-scale LLM training using native PyTorch. It is a repo that showcases PyTorch's latest distributed training features in a clean, minimal codebase.
In this talk, Tianyu will share TorchTitan’s design and optimizations for the Llama 3.1 family of LLMs, spanning 8 billion to 405 billion parameters, and showcase its performance, composability, and scalability.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.