Presto, an open source distributed SQL engine, is widely recognized for its low-latency queries, high concurrency, and native ability to query multiple data sources. Proven at scale in a variety of use cases at Comcast, GrubHub, FINRA, LinkedIn, Lyft, Netflix, Slack, Zalando, in the last few years Presto experienced an unprecedented growth in popularity in both on-premises and cloud deployments over Object Stores, HDFS, NoSQL and RDBMS data stores.
Delta Lake, a storage layer originally invented by Databricks and recently open sourced, brings ACID capabilities to big datasets held in Object Storage. While initially designed for Spark, Delta Lake now supports multiple query compute engines including Presto.
In this talk we discuss how Presto enables query-time correlations between Delta Lake, Snowflake, and Elasticsearch to drive interactive BI analytics across disparate datasets.
Presto, an open source distributed SQL engine, is widely recognized for its low-latency queries, high concurrency, and native ability to query multiple data sources. Proven at scale in a variety of use cases at Comcast, GrubHub, FINRA, LinkedIn, Lyft, Netflix, Slack, Zalando, in the last few years Presto experienced an unprecedented growth in popularity in both on-premises and cloud deployments over Object Stores, HDFS, NoSQL and RDBMS data stores.
Delta Lake, a storage layer originally invented by Databricks and recently open sourced, brings ACID capabilities to big datasets held in Object Storage. While initially designed for Spark, Delta Lake now supports multiple query compute engines including Presto.
In this talk we discuss how Presto enables query-time correlations between Delta Lake, Snowflake, and Elasticsearch to drive interactive BI analytics across disparate datasets.
Video:
Presentation Slides:
Presto, an open source distributed SQL engine, is widely recognized for its low-latency queries, high concurrency, and native ability to query multiple data sources. Proven at scale in a variety of use cases at Comcast, GrubHub, FINRA, LinkedIn, Lyft, Netflix, Slack, Zalando, in the last few years Presto experienced an unprecedented growth in popularity in both on-premises and cloud deployments over Object Stores, HDFS, NoSQL and RDBMS data stores.
Delta Lake, a storage layer originally invented by Databricks and recently open sourced, brings ACID capabilities to big datasets held in Object Storage. While initially designed for Spark, Delta Lake now supports multiple query compute engines including Presto.
In this talk we discuss how Presto enables query-time correlations between Delta Lake, Snowflake, and Elasticsearch to drive interactive BI analytics across disparate datasets.
Video:
Presentation Slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
Videos
In the rapidly evolving landscape of AI and machine learning, Platform and Data Infrastructure Teams face critical challenges in building and managing large-scale AI platforms. Performance bottlenecks, scalability of the platform, and scarcity of GPUs pose significant challenges in supporting large-scale model training and serving.
In this talk, we introduce how Alluxio helps Platform and Data Infrastructure teams deliver faster, more scalable platforms to ML Engineering teams developing and training AI models. Alluxio’s highly-distributed cache accelerates AI workloads by eliminating data loading bottlenecks and maximizing GPU utilization. Customers report up to 4x faster training performance with high-speed access to petabytes of data spread across billions of files regardless of persistent storage type or proximity to GPU clusters. Alluxio’s architecture lowers data infrastructure costs, increases GPU utilization, and enables workload portability for navigating GPU scarcity challenges.
TorchTitan is a proof-of-concept for Large-scale LLM training using native PyTorch. It is a repo that showcases PyTorch's latest distributed training features in a clean, minimal codebase.
In this talk, Tianyu will share TorchTitan’s design and optimizations for the Llama 3.1 family of LLMs, spanning 8 billion to 405 billion parameters, and showcase its performance, composability, and scalability.