In this keynote, you will learn about the evolution of the global data platform at Rakuten spread across multiple regions, and clouds. In addition, you will hear about the journey across the years, and the use of data orchestration for multiple use cases.
In this keynote, you will learn about the evolution of the global data platform at Rakuten spread across multiple regions, and clouds. In addition, you will hear about the journey across the years, and the use of data orchestration for multiple use cases.
Video: Presentation Slides:
Presentation Slides:
Complete the form below to access the full overview:
Videos
TorchTitan is a proof-of-concept for Large-scale LLM training using native PyTorch. It is a repo that showcases PyTorch's latest distributed training features in a clean, minimal codebase.
In this talk, Tianyu will share TorchTitan’s design and optimizations for the Llama 3.1 family of LLMs, spanning 8 billion to 405 billion parameters, and showcase its performance, composability, and scalability.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.