Data platform teams are increasingly challenged with accessing multiple data stores that are separated from compute engines, such as Spark, Presto, TensorFlow or PyTorch. Whether your data is distributed across multiple datacenters and/or clouds, a successful heterogeneous data platform requires efficient data access.
In October’s Product School, Alluxio’s Lead Solutions Engineer Greg Palmer will present and demo how Alluxio enables you to embrace the cloud migration strategy or multi-cloud architecture for large-scale analytics and AI workloads. Alluxio also helps scale out your platform adoption for analytics and AI across multiple tenants and applications teams.
Data platform teams are increasingly challenged with accessing multiple data stores that are separated from compute engines, such as Spark, Presto, TensorFlow or PyTorch. Whether your data is distributed across multiple datacenters and/or clouds, a successful heterogeneous data platform requires efficient data access.
In October’s Product School, Alluxio’s Lead Solutions Engineer Greg Palmer will present and demo how Alluxio enables you to embrace the cloud migration strategy or multi-cloud architecture for large-scale analytics and AI workloads. Alluxio also helps scale out your platform adoption for analytics and AI across multiple tenants and applications teams.
Video:
Presentation slides:
Data platform teams are increasingly challenged with accessing multiple data stores that are separated from compute engines, such as Spark, Presto, TensorFlow or PyTorch. Whether your data is distributed across multiple datacenters and/or clouds, a successful heterogeneous data platform requires efficient data access.
In October’s Product School, Alluxio’s Lead Solutions Engineer Greg Palmer will present and demo how Alluxio enables you to embrace the cloud migration strategy or multi-cloud architecture for large-scale analytics and AI workloads. Alluxio also helps scale out your platform adoption for analytics and AI across multiple tenants and applications teams.