Nowadays, cloud native environments have attracted lots of data-intensive applications deployed and ran on them, due to the efficient-to-deploy and easy-to-maintain advantages provided by cloud native platforms and frameworks such as Docker, Kubernetes. However, cloud native frameworks does not provide the data abstraction support to the applications natively. Therefore, we build Fluid project, which co-orchestrate data and containers together. We use Alluxio as the cache runtime inside Fluid to warm up hot data. In this report, we will introduce the design and effects of the Fluid project.
Nowadays, cloud native environments have attracted lots of data-intensive applications deployed and ran on them, due to the efficient-to-deploy and easy-to-maintain advantages provided by cloud native platforms and frameworks such as Docker, Kubernetes. However, cloud native frameworks does not provide the data abstraction support to the applications natively. Therefore, we build Fluid project, which co-orchestrate data and containers together. We use Alluxio as the cache runtime inside Fluid to warm up hot data. In this report, we will introduce the design and effects of the Fluid project.
Video:
Presentation Slides:
Nowadays, cloud native environments have attracted lots of data-intensive applications deployed and ran on them, due to the efficient-to-deploy and easy-to-maintain advantages provided by cloud native platforms and frameworks such as Docker, Kubernetes. However, cloud native frameworks does not provide the data abstraction support to the applications natively. Therefore, we build Fluid project, which co-orchestrate data and containers together. We use Alluxio as the cache runtime inside Fluid to warm up hot data. In this report, we will introduce the design and effects of the Fluid project.
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
Deepseek’s recent announcement of the Fire-flyer File System (3FS) has sparked excitement across the AI infra community, promising a breakthrough in how machine learning models access and process data.
In this webinar, an expert in distributed systems and AI infrastructure will take you inside Deepseek 3FS, the purpose-built file system for handling large files and high-bandwidth workloads. We’ll break down how 3FS optimizes data access and speeds up AI workloads as well as the design tradeoffs made to maximize throughput for AI workloads.
This webinar you’ll learn about how 3FS works under the hood, including:
✅ The system architecture
✅ Core software components
✅ Read/write flows
✅ Data distribution/placement algorithms
✅ Cluster/node management and disaster recovery
Whether you’re an AI researcher, ML engineer, or infrastructure architect, this deep dive will give you the technical insights you need to determine if 3FS is the right solution for you.