Cloud-native model training jobs require fast data access to achieve shorter training cycles. Accessing data can be challenging when your datasets are distributed across different regions and clouds. Additionally, as GPUs remain scarce and expensive resources, it becomes more common to set up remote training clusters from where data resides. This multi-region/cloud scenario introduces the challenges of losing data locality, resulting in operational overhead, latency and expensive cloud costs.
In the third webinar of the multi-cloud webinar series, Chanchan and Shawn dive deep into:
- The data locality challenges in the multi-region/cloud ML pipeline
- Using a cloud-native distributed caching system to overcome these challenges
- The architecture and integration of PyTorch/Ray+Alluxio+S3 using POSIX or RESTful APIs
- Live demo with ResNet and BERT benchmark results showing performance gains and cost savings analysis
Cloud-native model training jobs require fast data access to achieve shorter training cycles. Accessing data can be challenging when your datasets are distributed across different regions and clouds. Additionally, as GPUs remain scarce and expensive resources, it becomes more common to set up remote training clusters from where data resides. This multi-region/cloud scenario introduces the challenges of losing data locality, resulting in operational overhead, latency and expensive cloud costs.
In the third webinar of the multi-cloud webinar series, Chanchan and Shawn dive deep into:
- The data locality challenges in the multi-region/cloud ML pipeline
- Using a cloud-native distributed caching system to overcome these challenges
- The architecture and integration of PyTorch/Ray+Alluxio+S3 using POSIX or RESTful APIs
- Live demo with ResNet and BERT benchmark results showing performance gains and cost savings analysis
Video:
Presentation slides:
Cloud-native model training jobs require fast data access to achieve shorter training cycles. Accessing data can be challenging when your datasets are distributed across different regions and clouds. Additionally, as GPUs remain scarce and expensive resources, it becomes more common to set up remote training clusters from where data resides. This multi-region/cloud scenario introduces the challenges of losing data locality, resulting in operational overhead, latency and expensive cloud costs.
In the third webinar of the multi-cloud webinar series, Chanchan and Shawn dive deep into:
- The data locality challenges in the multi-region/cloud ML pipeline
- Using a cloud-native distributed caching system to overcome these challenges
- The architecture and integration of PyTorch/Ray+Alluxio+S3 using POSIX or RESTful APIs
- Live demo with ResNet and BERT benchmark results showing performance gains and cost savings analysis
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
Deepseek’s recent announcement of the Fire-flyer File System (3FS) has sparked excitement across the AI infra community, promising a breakthrough in how machine learning models access and process data.
In this webinar, an expert in distributed systems and AI infrastructure will take you inside Deepseek 3FS, the purpose-built file system for handling large files and high-bandwidth workloads. We’ll break down how 3FS optimizes data access and speeds up AI workloads as well as the design tradeoffs made to maximize throughput for AI workloads.
This webinar you’ll learn about how 3FS works under the hood, including:
✅ The system architecture
✅ Core software components
✅ Read/write flows
✅ Data distribution/placement algorithms
✅ Cluster/node management and disaster recovery
Whether you’re an AI researcher, ML engineer, or infrastructure architect, this deep dive will give you the technical insights you need to determine if 3FS is the right solution for you.