Cloud-native model training jobs require fast data access to achieve shorter training cycles. Accessing data can be challenging when your datasets are distributed across different regions and clouds. Additionally, as GPUs remain scarce and expensive resources, it becomes more common to set up remote training clusters from where data resides. This multi-region/cloud scenario introduces the challenges of losing data locality, resulting in operational overhead, latency and expensive cloud costs.
In the third webinar of the multi-cloud webinar series, Chanchan and Shawn dive deep into:
- The data locality challenges in the multi-region/cloud ML pipeline
- Using a cloud-native distributed caching system to overcome these challenges
- The architecture and integration of PyTorch/Ray+Alluxio+S3 using POSIX or RESTful APIs
- Live demo with ResNet and BERT benchmark results showing performance gains and cost savings analysis
Cloud-native model training jobs require fast data access to achieve shorter training cycles. Accessing data can be challenging when your datasets are distributed across different regions and clouds. Additionally, as GPUs remain scarce and expensive resources, it becomes more common to set up remote training clusters from where data resides. This multi-region/cloud scenario introduces the challenges of losing data locality, resulting in operational overhead, latency and expensive cloud costs.
In the third webinar of the multi-cloud webinar series, Chanchan and Shawn dive deep into:
- The data locality challenges in the multi-region/cloud ML pipeline
- Using a cloud-native distributed caching system to overcome these challenges
- The architecture and integration of PyTorch/Ray+Alluxio+S3 using POSIX or RESTful APIs
- Live demo with ResNet and BERT benchmark results showing performance gains and cost savings analysis
Video:
Presentation slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
In this talk, Ojus Save walks you through a demo of how to build AI applications on Zoom. This demo shows you an AI agent that receives transcript data from RTMS and then decides if it has to create action items based on the transcripts that are received.
In this talk, Sandeep Joshi, , Senior Manager at NVIDIA, shares how to accelerate the data access between GPU and storage for AI. Sandeep will dive into two options: CPU- initiated GPUDirect Storage and GPU-initiated SCADA.
Bin Fan, VP of Technology at Alluxio, introduces how Alluxio, a software layer transparently sits between application and S3 (or other object stores), provides sub-ms time to first byte (TTFB) solution, with up to 45x lower latency.