Data platform teams are increasingly challenged with accessing multiple data stores that are separated from compute engines, such as Spark, Presto, TensorFlow or PyTorch. Whether your data is distributed across multiple datacenters and/or clouds, a successful heterogeneous data platform requires efficient data access. Alluxio enables you to embrace the separation of storage from compute and use Alluxio data orchestration to simplify adoption of the data lake and data mesh paradigms for analytics and AI/ML workloads.
Join Alluxio’s Sr. Product Mgr., Adit Madan, to learn:
- Key challenges with architecting a successful heterogeneous data platform
- How data orchestration can overcome data access challenges in a distributed, heterogeneous environment
- How to identify ways to use Alluxio to meet the needs of your own data environment and workload requirements
Data platform teams are increasingly challenged with accessing multiple data stores that are separated from compute engines, such as Spark, Presto, TensorFlow or PyTorch. Whether your data is distributed across multiple datacenters and/or clouds, a successful heterogeneous data platform requires efficient data access. Alluxio enables you to embrace the separation of storage from compute and use Alluxio data orchestration to simplify adoption of the data lake and data mesh paradigms for analytics and AI/ML workloads.
Join Alluxio’s Sr. Product Mgr., Adit Madan, to learn:
- Key challenges with architecting a successful heterogeneous data platform
- How data orchestration can overcome data access challenges in a distributed, heterogeneous environment
- How to identify ways to use Alluxio to meet the needs of your own data environment and workload requirements
Video:
Presentation slides:
Complete the form below to access the full overview:
Videos
TorchTitan is a proof-of-concept for Large-scale LLM training using native PyTorch. It is a repo that showcases PyTorch's latest distributed training features in a clean, minimal codebase.
In this talk, Tianyu will share TorchTitan’s design and optimizations for the Llama 3.1 family of LLMs, spanning 8 billion to 405 billion parameters, and showcase its performance, composability, and scalability.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.