In February’s product school, Greg Palmer, Lead Solution Engineer at Alluxio, will present a live demo featuring Transparent URI, a key feature in Alluxio Enterprise Edition which provides ease of integration of Alluxio with your existing data stack without any changes to the location metadata of the Hive Metastore. Join us to learn the configurations and other advanced settings for employing Transparent URI to simplify DevOps of Alluxio implementation, allowing users to access their existing storage systems without changing URIs at application level.
In February’s product school, Greg Palmer, Lead Solution Engineer at Alluxio, will present a live demo featuring Transparent URI, a key feature in Alluxio Enterprise Edition which provides ease of integration of Alluxio with your existing data stack without any changes to the location metadata of the Hive Metastore. Join us to learn the configurations and other advanced settings for employing Transparent URI to simplify DevOps of Alluxio implementation, allowing users to access their existing storage systems without changing URIs at application level.
Video:
Presentation slides:
Complete the form below to access the full overview:
Videos
TorchTitan is a proof-of-concept for Large-scale LLM training using native PyTorch. It is a repo that showcases PyTorch's latest distributed training features in a clean, minimal codebase.
In this talk, Tianyu will share TorchTitan’s design and optimizations for the Llama 3.1 family of LLMs, spanning 8 billion to 405 billion parameters, and showcase its performance, composability, and scalability.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.