Alluxio’s capabilities as a Data Orchestration framework have encouraged users to onboard more of their data-driven applications to an Alluxio powered data access layer. Driven by strong interests from our open-source community, the core team of Alluxio started to re-design an efficient and transparent way for users to leverage data orchestration through the POSIX interface. This effort has a lot of progress with the collaboration with engineers from Microsoft, Alibaba and Tencent. Particularly, we have introduced a new JNI-based FUSE implementation to support POSIX data access, created a more efficient way to integrate Alluxio with FUSE service, as well as many improvements in relevant data operations like more efficient distributedLoad, optimizations on listing or calculating directories with a massive amount of files, which are common in model training. We will also share our engineering lessons and roadmap in future releases to support Machine Learning applications.
ALLUXIO DAY III 2021
April 27, 2021
Alluxio’s capabilities as a Data Orchestration framework have encouraged users to onboard more of their data-driven applications to an Alluxio powered data access layer. Driven by strong interests from our open-source community, the core team of Alluxio started to re-design an efficient and transparent way for users to leverage data orchestration through the POSIX interface. This effort has a lot of progress with the collaboration with engineers from Microsoft, Alibaba and Tencent. Particularly, we have introduced a new JNI-based FUSE implementation to support POSIX data access, created a more efficient way to integrate Alluxio with FUSE service, as well as many improvements in relevant data operations like more efficient distributedLoad, optimizations on listing or calculating directories with a massive amount of files, which are common in model training. We will also share our engineering lessons and roadmap in future releases to support Machine Learning applications.
Video:
Presentation Slides:
Complete the form below to access the full overview:
Videos
TorchTitan is a proof-of-concept for Large-scale LLM training using native PyTorch. It is a repo that showcases PyTorch's latest distributed training features in a clean, minimal codebase.
In this talk, Tianyu will share TorchTitan’s design and optimizations for the Llama 3.1 family of LLMs, spanning 8 billion to 405 billion parameters, and showcase its performance, composability, and scalability.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.