ChatGPT and other massive models represents an amazing step forward in AI, yet they do not solve real-world business problems. In this session, Jordan Plawner, Global Director of Artificial Intelligence Product Manager and Strategy at Intel, surveys how the AI ecosystem has worked non-stop over this last year to take these all-purpose multi-task models and optimize them to they can be used by organizations to address domain specific problems. He explains these new AI-for-the-real world techniques and methods such as fine tuning and how they can be applied to deliver results which are highly performant with state-of-the-art accuracy while also being economical to build and deploy everywhere to enhance products and services.
ChatGPT and other massive models represents an amazing step forward in AI, yet they do not solve real-world business problems. In this session, Jordan Plawner, Global Director of Artificial Intelligence Product Manager and Strategy at Intel, surveys how the AI ecosystem has worked non-stop over this last year to take these all-purpose multi-task models and optimize them to they can be used by organizations to address domain specific problems. He explains these new AI-for-the-real world techniques and methods such as fine tuning and how they can be applied to deliver results which are highly performant with state-of-the-art accuracy while also being economical to build and deploy everywhere to enhance products and services.
Video:
Presentation slides:
ChatGPT and other massive models represents an amazing step forward in AI, yet they do not solve real-world business problems. In this session, Jordan Plawner, Global Director of Artificial Intelligence Product Manager and Strategy at Intel, surveys how the AI ecosystem has worked non-stop over this last year to take these all-purpose multi-task models and optimize them to they can be used by organizations to address domain specific problems. He explains these new AI-for-the-real world techniques and methods such as fine tuning and how they can be applied to deliver results which are highly performant with state-of-the-art accuracy while also being economical to build and deploy everywhere to enhance products and services.
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
Deepseek’s recent announcement of the Fire-flyer File System (3FS) has sparked excitement across the AI infra community, promising a breakthrough in how machine learning models access and process data.
In this webinar, an expert in distributed systems and AI infrastructure will take you inside Deepseek 3FS, the purpose-built file system for handling large files and high-bandwidth workloads. We’ll break down how 3FS optimizes data access and speeds up AI workloads as well as the design tradeoffs made to maximize throughput for AI workloads.
This webinar you’ll learn about how 3FS works under the hood, including:
✅ The system architecture
✅ Core software components
✅ Read/write flows
✅ Data distribution/placement algorithms
✅ Cluster/node management and disaster recovery
Whether you’re an AI researcher, ML engineer, or infrastructure architect, this deep dive will give you the technical insights you need to determine if 3FS is the right solution for you.