This hands-on session discusses best practices for using PyTorch and Alluxio during model training on AWS. Shawn and Lu provide a step-by-step demonstration of how to use Alluxio on EKS as a distributed cache to accelerate computer vision model training jobs that read datasets from S3. This architecture significantly improves the utilization of GPUs from 30% to 90%+, archives ~5x faster training, and lower cloud storage costs.
This hands-on session discusses best practices for using PyTorch and Alluxio during model training on AWS. Shawn and Lu provide a step-by-step demonstration of how to use Alluxio on EKS as a distributed cache to accelerate computer vision model training jobs that read datasets from S3. This architecture significantly improves the utilization of GPUs from 30% to 90%+, archives ~5x faster training, and lower cloud storage costs.
Video:
Presentation slides:
Complete the form below to access the full overview:
Videos
TorchTitan is a proof-of-concept for Large-scale LLM training using native PyTorch. It is a repo that showcases PyTorch's latest distributed training features in a clean, minimal codebase.
In this talk, Tianyu will share TorchTitan’s design and optimizations for the Llama 3.1 family of LLMs, spanning 8 billion to 405 billion parameters, and showcase its performance, composability, and scalability.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.