RAPIDS is a set of open source libraries enabling GPU aware scheduling and memory representation for analytics and AI. Spark 3.0 uses RAPIDS for GPU computing to accelerate various jobs including SQL and DataFrame. With compute acceleration from massive parallelism on GPUs, there is a need for accelerating data access and this is what Alluxio enables for compute in any cloud. In this talk, you will learn how to use Alluxio and Spark with RAPIDS Accelerator on NVIDIA GPUs without any application changes.
ALLUXIO DAY III 2021
April 27, 2021
RAPIDS is a set of open source libraries enabling GPU aware scheduling and memory representation for analytics and AI. Spark 3.0 uses RAPIDS for GPU computing to accelerate various jobs including SQL and DataFrame. With compute acceleration from massive parallelism on GPUs, there is a need for accelerating data access and this is what Alluxio enables for compute in any cloud. In this talk, you will learn how to use Alluxio and Spark with RAPIDS Accelerator on NVIDIA GPUs without any application changes.
Video:
Presentation Slides:
RAPIDS is a set of open source libraries enabling GPU aware scheduling and memory representation for analytics and AI. Spark 3.0 uses RAPIDS for GPU computing to accelerate various jobs including SQL and DataFrame. With compute acceleration from massive parallelism on GPUs, there is a need for accelerating data access and this is what Alluxio enables for compute in any cloud. In this talk, you will learn how to use Alluxio and Spark with RAPIDS Accelerator on NVIDIA GPUs without any application changes.
Videos:
Presentation Slides:
Complete the form below to access the full overview:
.png)
Videos
Deepseek’s recent announcement of the Fire-flyer File System (3FS) has sparked excitement across the AI infra community, promising a breakthrough in how machine learning models access and process data.
In this webinar, an expert in distributed systems and AI infrastructure will take you inside Deepseek 3FS, the purpose-built file system for handling large files and high-bandwidth workloads. We’ll break down how 3FS optimizes data access and speeds up AI workloads as well as the design tradeoffs made to maximize throughput for AI workloads.
This webinar you’ll learn about how 3FS works under the hood, including:
✅ The system architecture
✅ Core software components
✅ Read/write flows
✅ Data distribution/placement algorithms
✅ Cluster/node management and disaster recovery
Whether you’re an AI researcher, ML engineer, or infrastructure architect, this deep dive will give you the technical insights you need to determine if 3FS is the right solution for you.