Organizations are retooling their enterprise data infrastructure in the race for AI/ML. However, growing datasets, extensive data engineering overhead, high GPU costs, and expensive specialized storage can make it difficult to get fast results from model development.
The data access layer is the key to accelerating your path to AI/ML. In this webinar, Roland Theron, Senior Solutions Engineer at Alluxio, discusses how the data access layer can help you:
- Build AI architecture on your existing data lake without the need for specialized hardware.
- Streamline the time-consuming process of managing data copies in data engineering.
- Speed up training workloads with high GPU utilization.
- Achieve optimal concurrency to deliver models to inference clusters for demanding applications
Organizations are retooling their enterprise data infrastructure in the race for AI/ML. However, growing datasets, extensive data engineering overhead, high GPU costs, and expensive specialized storage can make it difficult to get fast results from model development.
The data access layer is the key to accelerating your path to AI/ML. In this webinar, Roland Theron, Senior Solutions Engineer at Alluxio, discusses how the data access layer can help you:
- Build AI architecture on your existing data lake without the need for specialized hardware.
- Streamline the time-consuming process of managing data copies in data engineering.
- Speed up training workloads with high GPU utilization.
- Achieve optimal concurrency to deliver models to inference clusters for demanding applications
Video:
Presentation slides:
Complete the form below to access the full overview:
Videos
TorchTitan is a proof-of-concept for Large-scale LLM training using native PyTorch. It is a repo that showcases PyTorch's latest distributed training features in a clean, minimal codebase.
In this talk, Tianyu will share TorchTitan’s design and optimizations for the Llama 3.1 family of LLMs, spanning 8 billion to 405 billion parameters, and showcase its performance, composability, and scalability.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.